4(t)=-4.9(t)^2+442.225

Simple and best practice solution for 4(t)=-4.9(t)^2+442.225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(t)=-4.9(t)^2+442.225 equation:



4(t)=-4.9(t)^2+442.225
We move all terms to the left:
4(t)-(-4.9(t)^2+442.225)=0
determiningTheFunctionDomain -(-4.9t^2+442.225)+4t=0
We get rid of parentheses
4.9t^2+4t-442.225=0
a = 4.9; b = 4; c = -442.225;
Δ = b2-4ac
Δ = 42-4·4.9·(-442.225)
Δ = 8683.61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-\sqrt{8683.61}}{2*4.9}=\frac{-4-\sqrt{8683.61}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+\sqrt{8683.61}}{2*4.9}=\frac{-4+\sqrt{8683.61}}{9.8} $

See similar equations:

| p-(-3.2)=5.8 | | (3*x+8)^2-64=0 | | 1/4w^2-4/3=5/12w | | 3-4(4K-7)=7k-8 | | 0=k^2+9k-135 | | 8d-25=3d+2 | | 5(x+5)+3=-10(x-5)-2 | | 1/6-4/3x=x-1+3/4 | | 2x=75x+26x^2 | | 2x+18=138 | | 7x+17=-2 | | 4n^2-25n=0 | | -9x+15=-3x+45 | | -161=-9-8n | | (x+5)+x=35 | | 6s−-8s−13s=-12 | | 6(x+5)+2=-5(x-1)-8 | | 2(z-3)=4(z+5)-14 | | 16=9x+7 | | 14-6s-15=8s+19-4s | | 4x+6=1/2x-1 | | (5x^2-4)^1/4=x | | 0.009(6-k)+0.08(k-5)=1 | | 10x+4=4x-38 | | 3y−2y=9 | | 10x+4=4x-3£ | | 7=8x5+5 | | 3x/2-5=x-2 | | 5x-2(4x-2)=22 | | 10x-63=6x-7 | | 3(x+4)=x-23.5 | | -8+x/5=2 |

Equations solver categories